p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.500C24, C24.351C23, C22.2812+ 1+4, (C22×C4)⋊13D4, C23.185(C2×D4), C23.61(C4○D4), C23⋊2D4.13C2, C23.8Q8⋊77C2, C23.23D4⋊62C2, C23.34D4⋊39C2, C23.11D4⋊52C2, C23.10D4⋊48C2, C2.19(C23⋊3D4), (C22×C4).122C23, (C23×C4).131C22, (C2×C42).587C22, C22.330(C22×D4), C24.C22⋊98C2, (C22×D4).537C22, C2.73(C22.19C24), C23.63C23⋊104C2, C2.66(C22.45C24), C2.C42.230C22, C2.76(C22.47C24), C2.30(C22.53C24), (C2×C4×D4)⋊49C2, (C2×C4).1198(C2×D4), (C2×C4).160(C4○D4), (C2×C4⋊C4).340C22, C22.376(C2×C4○D4), (C2×C22⋊C4).201C22, SmallGroup(128,1332)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.500C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=db=bd, eae=ab=ba, ac=ca, faf=ad=da, ag=ga, bc=cb, geg-1=be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, fg=gf >
Subgroups: 612 in 302 conjugacy classes, 100 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C23×C4, C22×D4, C22×D4, C23.34D4, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C23⋊2D4, C23.10D4, C23.11D4, C2×C4×D4, C23.500C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, C22.19C24, C23⋊3D4, C22.45C24, C22.47C24, C22.53C24, C23.500C24
(1 32)(2 29)(3 30)(4 31)(5 51)(6 52)(7 49)(8 50)(9 46)(10 47)(11 48)(12 45)(13 58)(14 59)(15 60)(16 57)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(25 41)(26 42)(27 43)(28 44)(53 64)(54 61)(55 62)(56 63)
(1 18)(2 19)(3 20)(4 17)(5 13)(6 14)(7 15)(8 16)(9 62)(10 63)(11 64)(12 61)(21 28)(22 25)(23 26)(24 27)(29 39)(30 40)(31 37)(32 38)(33 44)(34 41)(35 42)(36 43)(45 54)(46 55)(47 56)(48 53)(49 60)(50 57)(51 58)(52 59)
(1 23)(2 24)(3 21)(4 22)(5 63)(6 64)(7 61)(8 62)(9 16)(10 13)(11 14)(12 15)(17 25)(18 26)(19 27)(20 28)(29 36)(30 33)(31 34)(32 35)(37 41)(38 42)(39 43)(40 44)(45 60)(46 57)(47 58)(48 59)(49 54)(50 55)(51 56)(52 53)
(1 20)(2 17)(3 18)(4 19)(5 15)(6 16)(7 13)(8 14)(9 64)(10 61)(11 62)(12 63)(21 26)(22 27)(23 28)(24 25)(29 37)(30 38)(31 39)(32 40)(33 42)(34 43)(35 44)(36 41)(45 56)(46 53)(47 54)(48 55)(49 58)(50 59)(51 60)(52 57)
(1 47)(2 53)(3 45)(4 55)(5 35)(6 43)(7 33)(8 41)(9 31)(10 38)(11 29)(12 40)(13 42)(14 36)(15 44)(16 34)(17 46)(18 56)(19 48)(20 54)(21 60)(22 50)(23 58)(24 52)(25 57)(26 51)(27 59)(28 49)(30 61)(32 63)(37 62)(39 64)
(5 12)(6 9)(7 10)(8 11)(13 61)(14 62)(15 63)(16 64)(29 37)(30 38)(31 39)(32 40)(33 42)(34 43)(35 44)(36 41)(45 60)(46 57)(47 58)(48 59)(49 54)(50 55)(51 56)(52 53)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
G:=sub<Sym(64)| (1,32)(2,29)(3,30)(4,31)(5,51)(6,52)(7,49)(8,50)(9,46)(10,47)(11,48)(12,45)(13,58)(14,59)(15,60)(16,57)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(53,64)(54,61)(55,62)(56,63), (1,18)(2,19)(3,20)(4,17)(5,13)(6,14)(7,15)(8,16)(9,62)(10,63)(11,64)(12,61)(21,28)(22,25)(23,26)(24,27)(29,39)(30,40)(31,37)(32,38)(33,44)(34,41)(35,42)(36,43)(45,54)(46,55)(47,56)(48,53)(49,60)(50,57)(51,58)(52,59), (1,23)(2,24)(3,21)(4,22)(5,63)(6,64)(7,61)(8,62)(9,16)(10,13)(11,14)(12,15)(17,25)(18,26)(19,27)(20,28)(29,36)(30,33)(31,34)(32,35)(37,41)(38,42)(39,43)(40,44)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,20)(2,17)(3,18)(4,19)(5,15)(6,16)(7,13)(8,14)(9,64)(10,61)(11,62)(12,63)(21,26)(22,27)(23,28)(24,25)(29,37)(30,38)(31,39)(32,40)(33,42)(34,43)(35,44)(36,41)(45,56)(46,53)(47,54)(48,55)(49,58)(50,59)(51,60)(52,57), (1,47)(2,53)(3,45)(4,55)(5,35)(6,43)(7,33)(8,41)(9,31)(10,38)(11,29)(12,40)(13,42)(14,36)(15,44)(16,34)(17,46)(18,56)(19,48)(20,54)(21,60)(22,50)(23,58)(24,52)(25,57)(26,51)(27,59)(28,49)(30,61)(32,63)(37,62)(39,64), (5,12)(6,9)(7,10)(8,11)(13,61)(14,62)(15,63)(16,64)(29,37)(30,38)(31,39)(32,40)(33,42)(34,43)(35,44)(36,41)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)>;
G:=Group( (1,32)(2,29)(3,30)(4,31)(5,51)(6,52)(7,49)(8,50)(9,46)(10,47)(11,48)(12,45)(13,58)(14,59)(15,60)(16,57)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(53,64)(54,61)(55,62)(56,63), (1,18)(2,19)(3,20)(4,17)(5,13)(6,14)(7,15)(8,16)(9,62)(10,63)(11,64)(12,61)(21,28)(22,25)(23,26)(24,27)(29,39)(30,40)(31,37)(32,38)(33,44)(34,41)(35,42)(36,43)(45,54)(46,55)(47,56)(48,53)(49,60)(50,57)(51,58)(52,59), (1,23)(2,24)(3,21)(4,22)(5,63)(6,64)(7,61)(8,62)(9,16)(10,13)(11,14)(12,15)(17,25)(18,26)(19,27)(20,28)(29,36)(30,33)(31,34)(32,35)(37,41)(38,42)(39,43)(40,44)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,20)(2,17)(3,18)(4,19)(5,15)(6,16)(7,13)(8,14)(9,64)(10,61)(11,62)(12,63)(21,26)(22,27)(23,28)(24,25)(29,37)(30,38)(31,39)(32,40)(33,42)(34,43)(35,44)(36,41)(45,56)(46,53)(47,54)(48,55)(49,58)(50,59)(51,60)(52,57), (1,47)(2,53)(3,45)(4,55)(5,35)(6,43)(7,33)(8,41)(9,31)(10,38)(11,29)(12,40)(13,42)(14,36)(15,44)(16,34)(17,46)(18,56)(19,48)(20,54)(21,60)(22,50)(23,58)(24,52)(25,57)(26,51)(27,59)(28,49)(30,61)(32,63)(37,62)(39,64), (5,12)(6,9)(7,10)(8,11)(13,61)(14,62)(15,63)(16,64)(29,37)(30,38)(31,39)(32,40)(33,42)(34,43)(35,44)(36,41)(45,60)(46,57)(47,58)(48,59)(49,54)(50,55)(51,56)(52,53), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64) );
G=PermutationGroup([[(1,32),(2,29),(3,30),(4,31),(5,51),(6,52),(7,49),(8,50),(9,46),(10,47),(11,48),(12,45),(13,58),(14,59),(15,60),(16,57),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(25,41),(26,42),(27,43),(28,44),(53,64),(54,61),(55,62),(56,63)], [(1,18),(2,19),(3,20),(4,17),(5,13),(6,14),(7,15),(8,16),(9,62),(10,63),(11,64),(12,61),(21,28),(22,25),(23,26),(24,27),(29,39),(30,40),(31,37),(32,38),(33,44),(34,41),(35,42),(36,43),(45,54),(46,55),(47,56),(48,53),(49,60),(50,57),(51,58),(52,59)], [(1,23),(2,24),(3,21),(4,22),(5,63),(6,64),(7,61),(8,62),(9,16),(10,13),(11,14),(12,15),(17,25),(18,26),(19,27),(20,28),(29,36),(30,33),(31,34),(32,35),(37,41),(38,42),(39,43),(40,44),(45,60),(46,57),(47,58),(48,59),(49,54),(50,55),(51,56),(52,53)], [(1,20),(2,17),(3,18),(4,19),(5,15),(6,16),(7,13),(8,14),(9,64),(10,61),(11,62),(12,63),(21,26),(22,27),(23,28),(24,25),(29,37),(30,38),(31,39),(32,40),(33,42),(34,43),(35,44),(36,41),(45,56),(46,53),(47,54),(48,55),(49,58),(50,59),(51,60),(52,57)], [(1,47),(2,53),(3,45),(4,55),(5,35),(6,43),(7,33),(8,41),(9,31),(10,38),(11,29),(12,40),(13,42),(14,36),(15,44),(16,34),(17,46),(18,56),(19,48),(20,54),(21,60),(22,50),(23,58),(24,52),(25,57),(26,51),(27,59),(28,49),(30,61),(32,63),(37,62),(39,64)], [(5,12),(6,9),(7,10),(8,11),(13,61),(14,62),(15,63),(16,64),(29,37),(30,38),(31,39),(32,40),(33,42),(34,43),(35,44),(36,41),(45,60),(46,57),(47,58),(48,59),(49,54),(50,55),(51,56),(52,53)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2M | 4A | ··· | 4H | 4I | ··· | 4T | 4U | 4V | 4W | 4X |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | C4○D4 | C4○D4 | 2+ 1+4 |
kernel | C23.500C24 | C23.34D4 | C23.8Q8 | C23.23D4 | C23.63C23 | C24.C22 | C23⋊2D4 | C23.10D4 | C23.11D4 | C2×C4×D4 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 4 | 8 | 8 | 2 |
Matrix representation of C23.500C24 ►in GL6(𝔽5)
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 3 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(6,GF(5))| [0,3,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,3,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,4,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3] >;
C23.500C24 in GAP, Magma, Sage, TeX
C_2^3._{500}C_2^4
% in TeX
G:=Group("C2^3.500C2^4");
// GroupNames label
G:=SmallGroup(128,1332);
// by ID
G=gap.SmallGroup(128,1332);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,723,675,304]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=d*b=b*d,e*a*e=a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*g=g*a,b*c=c*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations